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Abstract 

The contribution of massive fermions and topologically massive gauge 

fields to a Chern-Simons term for the graviton is computed to one loop 

order in three dimensions. Invariance under large coordinate transfor- 

mations places restrictions on the number of these massive matter fields. 

The parity anomaly for massless fermions is determined, and a possible 

parity anomaly for massless gauge fields is suggested. 
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The Chern-Simons mass term for gauge fields in three space-time dimensions has 

generated much inter&.(‘-‘) For non-abelian gauge fields, invariance under large 

gauge transformations requires the mass to be quantized in units of the coupling 

constant.tt-3) To one loop order, massive fermions produce a (finite) renormaliza- 

tion of the Chern-Simons term, which can result in restrictions on the number 

of fermion 6elds.t3-s) When the fermions are massless, these restrictions are un- 

changed, although then they arise from a non-perturbative parity anomaly.t’-s) 

In this letter we consider a Chern-Simons term for gravity in three Euclidean 

space-time dimensions.(‘*‘) Like non-abelian gauge fields, for Euclidean gravity the 

coupling of the Chern-Simons term must be quantized to preserve invariance under 

large coordinate transformations. tl) Coupling massive fermions and (topoiogically) 

massive spin-l fields to gravity, the renormalization of the graviton’s Chern-Simons 

term is computed to one loop order. Topological invariance leads to limitations on 

the number and type of both spin-l/2 and spin-l fields. For massless fermions, the 

same result follows from a non-perturbative parity anomaly. In contrast, we are 

unable to derive a nonperturbative parity anomaly for massless spin-l fields, but 

conjecture that such an effect might occur. 

The Lagrangian for Einstein gravity is given by 

As usual, R is the scalar curvature, g,,” the metric tensor, ,,@ = (detg,,)ri2, and 6s 
is Newton’s constant. A Chern-Simons term can be added to this Lagrangian 

L 
i cs=-- 

4dp cQVA ( RFn~w), * + %I,,, ‘wvb cwA, “). 
3 (2) 

The basic dynamical variables of the theory are the dreibein fields e;, where gpV = 

eiez and e” = g’“e;. From the dreibein, the spin connection w,, nb is given by 

WP * = $!“v(a,e; - aye;) + $“‘e’*(&e: - a,e;)e,, - (a c-) a). (3) 

while the curvature tensor is 

R jA”.d = ap&d - a&J,, + we cw,,* - W”. CWIlrb. (4) 
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For pure Einstein gravity, on the mass shell there are no propagating degrees 

of freedom. By adding a Chern-Simons term, the graviton becomes a propagating 
field of spin 2 and mass I(. (ll Under a parity transformation, LCS changes sign, while 
L does not. As a consequence, for finite p the graviton has a definite handedness, 
depending upon the sign of cc. 

The action formed from L + Lcs is not invariant under arbitrary coordinate 
transformations. In general, the action transforms into itself, a surface term, plus 
a term which depends upon the gravitational winding number of the coordinate 
transformation. We assume that the manifold is compact, so that the surface term 
vanishes. To evaluate the term involving the winding ,number, remember that the 
Chern-Simons term in three dimensions is the fourth component of a topological 
current, where the divergence of this four-current is proportional to the density of 
gravitational instantons in four dimensions. Integrating the instanton density over 
four dimensional space-time gives the instanton ‘number pOrDv of a gravitational 
instanton, 

1 
Pprav = - 961r* / 

@O R 
w ab hoab &i d’z; (5) 

pgrav is an integer for all compact orientable four-manifolds. Since the instanton 
number can be expressed as a difference of (three-dimensional) winding numbers, 
the normalization of pprou can be used to show that under topologicaliy non-trivial 
coordinate transformations, the action for topologically massive gravity changes 
by (24 (67r/(pn*)) t’ nnes an integer. Consequently, invariance under large coordi- 
nate transformations imposes a quantization condition that relates the mass p to 
Newton’s constant: 

6x 
qr - = an integer. 

w* 
This quantization condition is analogous to that in non-abelian gauge theories, since 
the spin connection can be viewed ss a gauge field for the group of local Euclidean 
rotations, which is SO(3).(‘) Th ere appears to be no quantization condition on q in 
Minkowski space-time, for the maximal compact subgroup of the Lorentz group is 
SO (2)) which is homotopically trivial. 

We consider the effect of matter fields on topologically massive gravity in weak 
coupling. Because Newton’s constant ICY has dimensions of inverse mass, weak cou- 
pling means that any mass should be smaller than l/n*. 1Ve assume this condition 
holds for all matter fields as well as for the Chern-Simons mass for the graviton 
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itself; if pu* is small, the integer q in eq. (6) is a large number. 

While the assumption of weak coupling generally means that one can trust the 
loop expansion, in this case that is not at all obvious; for by power counting the 
model is not renormalizable. Why then are our calculations of interest? Foremost is 
the fact that the quantity we compute is ultraviolet finite, at least to leading order. 
Thus in obtaining constraints on the matter fields, we derive a recessary condition 
for the self-consistency of topologically massive (quantum) gravity. 

Matter fields are coupIed to gravity in a standard fashion. The fermion part of 
the Lagrangian is 

Lf cr = +-67*e~~,tlr - m&b). (7) 

V/J is a two component spinor, 7“ are the three dimensional Euclidean gamma ma- 
trices, and ml is the mass of the fermion. The covariant derivative is given by 
D, = ~3, + ~~&7cWp crb. The photon Lagrangian is i 

where mph is the (topological) mass of the photon. For the quantity of interest, it 
doesn’t matter if the gauge field is abelian or not, so for simplicity we have taken 
it to be a photon. Lastly, we assume that there are N, flavors of fermions and Nph 
types of photons, identical in’ all respects. 

To leading order it suffices to linearise the dreibein to first order in n. Writing 

a 
eP - - aa, + Kha,, (9) 

we compute the two point function of the graviton in the presence of fermion and 
photon loops. The fermion propagator is 

A(P) = z I;m, ; 

the fermion-fermion-graviton vertex is 

(10) 
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(II and p are the graviton indices and k ita momentum, while p and q are the momenta 
of the fermione. In Landau gauge the photon propagator is 

(12) 

with the photon-photon-graviton vertex 

where again Q, /3, and k refer to the graviton, while p, V, p, and q are the indices 
and momenta of the photons. 

We wish to compute the renormalized value of q, 

04) 

to one loop order. For this it is only necessary to compute the parity-odd part of 
the graviton propagator about zero momentum. Although the total contribution 
of matter fields to (~Llt~)~~ is ultraviolet finite, individual terms can be divergent. 
These are regulated by a parity even regulator such as dimensional regularisation. 
We find 

Q w NPh 
ren =q - -iTisign(m,) + Ssign(m,h) + . . . . (15) 

There is an elementary way to view eq. (15). The fermion maSs and the Chem- 
Simons terms for the photon and graviton are all odd under parity. When loop 
effects are computed, it is natural to expect that the parity odd part of the matter 
sector wiil affect that of gravity. 

The value of qrcn in eq. (15) includes the contribution of all matter fields to 
one loop order (scalars do not enter), but it does not include the contribution of 
virtual gravitons. If the example of a non-abelian gauge theory is any guide, this 
calculation is rather more involved.(3) Even so, while virtual gluons do contribute to 
the quantity analogous to q ,m in a non-abelian theory, their contribution is always 
an integer. Similarly, we assume that virtual gravitons contribute some integer to 

!I bin- This assumption is not as cavalier ss it might first appear: it is equivalent 
to the statement that if a theory of topologically massive gravity (without matter , 
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fields) is invariant under latge coordinate transformations classically, it will remain 
so quantum mechanically. 

For the theory to be invariant under large coordinate transformations order 
by order in the loop expansion, qrm - q must be an integer. For a theory with 
only fermions or photons all with the same sign of the mass, eq. (15) implies that 
the number of fermions must be a multiple of sixteen, or the number of photons a 
multiple of eight. There are obviously many other solutions possible if both fermions 
and photons with either sign of the mass are allowed. 

Are there contributions to qrrn at higher order in the loop expansion? On di- 
mensional grounds, to two loop order such terms could only be o(p~n=), O(m,n2), 

or O(m,hn’). In weak coupling, these terms are infintesimally small, so the only 
way in which qrcn could remain an integer would be if all such corrections vanished 
identically; whether or not they do is another matter. This would also mean that if 
ultraviolet infinities appear in p,,, and n&,,, they ‘must cancel when qrm is formed. 
This would be like the consequences of the topological Ward identity in non-abelian 
gauge theories.t3) 

The qrrn of eq. (15) is computed in weak coupling, when rnf and mph are much 
less than l/rc2, but the result depends only upon their sign, and is independent of 
their magnitude. A natural question is then do similar consequences follow when 
these masses vanish? As explained in ref. (6), by considering the physically relevant 
order of liits when rnf and mph are tuned to zero, there will be no contribution to 
the Chern-Simons term in perturbation theory. As in non-abelian gauge theories, 
however, there can be a non-perturbative parity anomaly. 

We start with the case of massless fermions without photon fields. In this 
instance, we can copy the treatment of massless fermions in a non-abelian gauge 
theory.(‘) The essential trick is to introduce a fourth coordinate which interpolates 
between sectors with different winding number. The three-dimensional fermion 
determinant is extended to one in four dimensions, and the phase of the (three- 
dimensional) fermion determinant found from the spectral flow in four dimensions. 
The spectral flow is summarized by the relation between the number of left- and 
right-handed zero modes, nL and ?zR, and the instanton number for the gauge field, 
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P#ouor* For fermions in the fundamental representation of an SU(2) gauge field, 

nL - nR = Pgaugc. (16) 

From eq. (16), configurations with odd instanton number poouoc have an odd number 
of zero modes. This means that for a single fermion flavor in three dimensions, the 
fermion determinant in the presence of a pure gauge field with odd winding number 
differs from that in zero field by a minus sign. To ensure topological gauge invariance 
order by order in the loop expansion, the total number of fermion flavors must be 
even.(4*6) The restriction is identical to that found for massive fermions, where the 
resu-It analogous to eq. (15) is qrcn = q + (N1/2)sign(m,).(5) 

This reasoning can be extended to topologically massive gravity, at least naively. 
All that is needed is the relation for zero modes in the field of a gravitational 
instanton:@) I ! 

IzL - nR = ;Psml”. (17) 

From eq. (17) we assume that “one-eighth” of a zero mode exists per unit of 
instanton number. If so, then per flavor the fermion determinant in three dimensions 
acquires a phase of h/8 for a coordinate transformation of unit winding number. 
To ensure invariance under arbitrary coordinate transformations, the number of 
fermion flavors must be a multiple of sixteen - exactly as from eq. (15). 

This argument has no rigor whatsoever. After all, there can never be vone- 
eighth” of a zero mode. The resolution of this problem is well-known. It is only 
possible to define a spin structure globally on a manifold if the second Stiefel- 
Whitney class of that manifold vanishes.tg) By Rohlin’s theorem, for manifolds 
in four dimensions this implies that the instanton number must be a multiple of 

sixteen. (Note that the Pontryagin number is three times the instanton number 

pprou of eq. (5).) F rom eq. (17), manifolds that admit a global spin structure have 
not only integral but an even number of zero modes. 

We nevertheless believe that while our arguments are imprecise, our conclusion 

is correct - that whatever the mass of the fermion, N, must be a multiple of 
sixteen. The crucial point is that a manifold fails to admit a globally defined spin 
structure because of an essentially abelian phase factor. (This is illustrated by the 
way Rohlin’s theorem is avoided by an extended spin structure,(“) where an abelian 
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Dirac monopole is added to the field content.) Being abelian, it should be sensible 
to add together the phases of the fermion determinant from different flavors. 

This leaves the question of massless gauge fields, but here we are at a loss as 
to how to proceed. An essential part of the treatment of fermions is that in four 
dimensions the massless fermion determinant is chiral, so it is possible to define left- 
and right-handed zero modes. This is not true for gauge fields; indeed, the very 
concept of a topological mass is manifestly special to three dimensions. 

On the other hand, the result for fermions is intuitively “obviousn - since the 

restriction on the number of matter fields derived in weak coupling is independent 
of their mass, logically the simplest possibility is that this restriction is unchanged 
as the mass changes. Otherwise, it would have to change discontinuously as the 
maSs decreased. For this reason, we propose that there is a nonperturbative parity 
anomaly for massless gauge fields in the presence of a background gravitational 
field, and that this gives the same restrictions as found from eq. (15). We do not 
know how in detail this might come about. 
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